Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37972349

ABSTRACT

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pneumonia, Bacterial , Respiratory Distress Syndrome , Humans , Mice , Animals , Calcium Channels/metabolism , Calcium Channels/pharmacology , Calcium/metabolism , HEK293 Cells , Methicillin-Resistant Staphylococcus aureus/metabolism , Calcium Signaling , Inflammation/drug therapy , Lung/metabolism , Respiratory Distress Syndrome/drug therapy , Pneumonia, Bacterial/drug therapy , ORAI1 Protein/metabolism , ORAI1 Protein/pharmacology
2.
Nicotine Tob Res ; 26(3): 307-315, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-37539752

ABSTRACT

INTRODUCTION: Evidence suggests that e-liquid flavor and nicotine concentration are important factors in the initiation and maintenance of e-cigarette use (vaping). Flavors may increase the initiation and maintenance of vaping, and nicotine content is a factor in e-cigarette dependence and the efficacy of e-cigarettes for cigarette smoking cessation. Few human laboratory studies have assessed the joint and interactive effects of flavor and nicotine on subjective responses to e-cigarettes. METHODS: Regular e-cigarette users (N = 89) completed a multi-session study involving a paced vaping procedure with e-liquid cartridges containing their preferred flavor (berry, menthol, or tobacco) or no flavor, with or without nicotine (18 mg). Subjective effects of vaping (satisfaction, reward, aversion, airway sensations, and craving relief) were assessed. RESULTS: Nicotine significantly increased psychological reward and craving relief, whereas flavor significantly increased vaping satisfaction and taste. Nicotine dependence severity moderated the effect of nicotine on reward, such that those with the greatest dependence severity reported the greatest reward. CONCLUSIONS: These findings support differential and noninteractive effects of e-liquid nicotine content and flavor on reinforcing effects of e-cigarettes. IMPLICATIONS: E-liquid flavor and nicotine content have independent, non-interactive effects on subjective responses to vaping under controlled laboratory conditions. Among regular e-cigarette users, vaping a preferred flavor increased taste and satisfaction, but did not interact with nicotine to alter reward or craving. Further research on the ways in which these subjective effects may motivate vaping behavior among different populations of e-cigarette users would be useful to inform regulatory policy of ENDS products.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Vaping , Humans , Nicotine , Flavoring Agents , Double-Blind Method , Vaping/psychology
3.
Ann Am Thorac Soc ; 21(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903340

ABSTRACT

"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult. This has been particularly challenging within the pulmonary field, because there have been fewer U.S. Food and Drug Administration-approved drugs and higher failure rates for pulmonary therapies than with other common disease areas. The American Thoracic Society convened a working group with the goal of identifying major challenges related to the commercialization of technologies within the pulmonary space and opportunities to enhance this process. A survey was developed and administered to 164 participants within the pulmonary arena. This report provides a summary of these survey results. Importantly, this report identifies a number of poorly recognized challenges that exist in pulmonary academic settings, which likely contribute to diminished efficiency of commercialization efforts, ultimately hindering the rate of successful clinical translation. Because many innovations are initially developed in academic settings, this is a global public health issue that impacts the entire American Thoracic Society community. This report also summarizes key resources and opportunities and provides recommendations to enhance successful commercialization of pulmonary technologies.


Subject(s)
Biomedical Technology , Pulmonary Medicine , Translational Science, Biomedical , Humans , United States
4.
Cells ; 12(22)2023 11 13.
Article in English | MEDLINE | ID: mdl-37998353

ABSTRACT

People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Coculture Techniques , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Lung/metabolism
5.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895029

ABSTRACT

Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.


Subject(s)
Vaping , Humans , Vaping/adverse effects , Proteolysis , Dehydration/metabolism , Respiratory Mucosa/metabolism , Lung/metabolism , Epithelial Sodium Channels/metabolism
6.
Mol Ther Methods Clin Dev ; 30: 593-605, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37701179

ABSTRACT

Class Ia/b cystic fibrosis transmembrane regulator (CFTR) variants cause severe lung disease in 10% of cystic fibrosis (CF) patients and are untreatable with small-molecule pharmaceuticals. Genetic replacement of CFTR offers a cure, but its effectiveness is limited in vivo. We hypothesized that enhancing protein levels (using codon optimization) and/or activity (using gain-of-function variants) of CFTR would more effectively restore function to CF bronchial epithelial cells. Three different variants of the CFTR protein were tested: codon optimized (high codon adaptation index [hCAI]), a gain-of-function (GOF) variant (K978C), and a combination of both (hˆK978C). In human embryonic kidney (HEK293T) cells, initial results showed that hCAI and hˆK978C produced greater than 10-fold more CFTR protein and displayed ∼4-fold greater activity than wild-type (WT) CFTR. However, functionality was profoundly different in CF bronchial epithelial cells. Here, K978C CFTR more potently restored essential epithelial functions (anion transport, airway surface liquid height, and pH) than WT CFTR. hCAI and hˆK978C CFTRs had limited impact because of mislocalization in the cell. These data provide a proof of principle showing that GOF variants may be more effective than codon-optimized forms of CFTR for CF gene therapy.

7.
Cells ; 12(7)2023 03 24.
Article in English | MEDLINE | ID: mdl-37048070

ABSTRACT

Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the "gold standard" in preclinical studies. However, HBECs are not without their limitations: they are non-immortalized and the requirement for human donors, especially those with rare genetic mutations, can make HBECs expensive and/or difficult to source. For these reasons, researchers may opt to expand HBECs by passaging. This practice is common, but to date, there has not been a robust analysis of the impact of expanding HBECs on their phenotype. Here, we used functional studies of airway surface liquid (ASL) homeostasis, epithelial barrier properties, and RNA-seq and Western blotting to investigate HBEC changes over two passage cycles. We found that passaging impaired CFTR-mediated ASL secretion and led to a reduction in the plasma membrane expression of the epithelial sodium channel (ENaC) and CFTR. Passaging also resulted in an increase in transepithelial resistance and a decrease in epithelial water permeability. We then looked for changes at the mRNA level and found that passaging significantly affected 323 genes, including genes involved in inflammation, cell growth, and extracellular matrix remodeling. Collectively, these data highlight the potential for HBEC expansion to impact research findings.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Biological Transport , Ion Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Altern Lab Anim ; 51(1): 55-79, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36821083

ABSTRACT

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Nicotiana/toxicity , Tobacco Products/toxicity , Nicotine/toxicity , Aerosols/toxicity , In Vitro Techniques
9.
J Appl Toxicol ; 43(6): 862-873, 2023 06.
Article in English | MEDLINE | ID: mdl-36594405

ABSTRACT

Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.


Subject(s)
Cigarette Smoking , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Bronchi , Nicotiana/toxicity , Inflammation , Epithelial Cells
10.
J Appl Toxicol ; 43(5): 680-693, 2023 05.
Article in English | MEDLINE | ID: mdl-36372912

ABSTRACT

E-cigarette, or vaping product use-associated lung injury (EVALI), is a severe respiratory disorder that caused a sudden outbreak of hospitalized young people in 2019. Using cannabis oil containing vaping products, including vitamin E acetate contaminants, was found to be strongly associated with EVALI. However, the underlying tissue impacts of the condition are still largely unknown. Here, we focused on the vehicle cannabinoid oil (CBD oil) and contaminant vitamin E acetate (VEA) effects on airway epithelial cells. Primary human bronchial epithelial (HBE) cultures were exposed to e-liquid aerosols that contained CBD oil and VEA in combination or the common e-liquid components PG/VG with and without nicotine. Cell viability analysis indicated dramatically increased cell death counts after 3 days of CBD exposure, and this effect was even higher after CBD + VEA exposure. Microscopic examination of the cultures revealed cannabinoid and VEA depositions on the epithelial surfaces and cannabinoid accumulation in exposed cells, followed by cell death. These observations were supported by proteomic analysis of the cell secretions that exhibited increases in known markers of airway epithelial toxicity, such as xenobiotic enzymes, factors related to oxidative stress response, and cell death indicators. Overall, our study provides insights into the association between cannabinoid oil and vitamin E acetate vaping and lung injury. Collectively, our results suggest that the adherent accumulation of CBD oil on airway surfaces and the cellular uptake of both CBD oil- and VEA-containing condensates cause elevated metabolic stress, leading to increased cell death rates in human airway epithelial cultures.


Subject(s)
Cannabinoids , Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Humans , Adolescent , Cannabinoids/toxicity , Vaping/adverse effects , Lung Injury/chemically induced , Proteomics , Dronabinol/toxicity , Respiratory Aerosols and Droplets , Vitamin E/analysis , Vitamin E/toxicity , Epithelium , Acetates/toxicity
11.
J Cyst Fibros ; 22(1): 161-171, 2023 01.
Article in English | MEDLINE | ID: mdl-35961837

ABSTRACT

QUESTION: In diseases such as asthma and cystic fibrosis (CF), the immune response is dysregulated and the lung is chronically inflamed. Orai1 activation is required for the initiation and persistence of inflammation. However, Orai1 expression in the lung is poorly understood. We therefore tested the hypothesis that Orai1 expression was upregulated in asthmatic and CF lungs. MATERIALS AND METHODS: We used LungMAP to analyze single-cell RNAseq data of Orai1 and stromal interaction molecule 1 (STIM1) expression in normal human lungs. We then performed RNAscope analysis and immunostaining on lung sections from normal, asthma, and CF donors. We imaged sections by confocal and super resolution microscopy, and analyzed Orai1 and STIM1 expression in different pulmonary cell types. RESULTS: Orai1 was broadly-expressed, but expression was greatest in immune cells. At mRNA and protein levels, there were no consistent trends in expression levels between the three phenotypes. Orai1 must interact with STIM1 in order to activate and conduct Ca2+. We therefore used STIM1/Orai1 co-localization as a marker of Orai1 activity. Using this approach, we found significantly increased co-localization between these proteins in epithelia, interstitial and luminal immune cells, but not alveoli, from asthma and CF lungs. Orai1 also aggregates as part of its activation process. Using super resolution microscopy, we also found significantly increased Orai1 aggregation in immune cells from asthmatic and CF lungs. CONCLUSION: We found evidence that Orai1 was more active in asthma and CF than normal lungs. These data suggest that Orai1 is a relevant target for reducing pulmonary inflammation.


Subject(s)
Asthma , Cystic Fibrosis , Humans , Calcium Channels/genetics , Calcium Channels/metabolism , Microscopy , Lung/metabolism , Calcium/metabolism , ORAI1 Protein
12.
Circ Res ; 131(3): e70-e82, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35726609

ABSTRACT

Although the US Food and Drug Administration has not approved e-cigarettes as a cessation aid, industry has at times positioned their products in that way for adults trying to quit traditional cigarettes; however, their novelty and customizability have driven them into the hands of unintended users, particularly adolescents. Most new users of e-cigarette products have never smoked traditional cigarettes; therefore, understanding the respiratory and cardiovascular consequences of e-cigarette use has become of increasing interest to the research community. Most studies have been performed on adult e-cigarette users, but the majority of these study participants are either former traditional smokers or smokers who have used e-cigarettes to switch from traditional smoking. Therefore, the respiratory and cardiovascular consequences in this population are not attributable to e-cigarette use alone. Preclinical studies have been used to study the effects of naive e-cigarette use on various organ systems; however, almost all of these studies have used adult animals, which makes translation of health effects to adolescents problematic. Given that inhalation of any foreign substance can have effects on the respiratory and cardiovascular systems, a more holistic understanding of the pathways involved in toxicity could help to guide researchers to novel therapeutic treatment strategies. The goals of this scientific statement are to provide salient background information on the cardiopulmonary consequences of e-cigarette use (vaping) in adolescents, to guide therapeutic and preventive strategies and future research directions, and to inform public policymakers on the risks, both short and long term, of vaping.


Subject(s)
Electronic Nicotine Delivery Systems , Smoking Cessation , Vaping , American Heart Association , Humans , Smokers , Vaping/adverse effects
13.
Physiol Rep ; 10(10): e15306, 2022 05.
Article in English | MEDLINE | ID: mdl-35581745

ABSTRACT

Orai1 is a ubiquitously-expressed plasma membrane Ca2+ channel that is involved in store-operated Ca2+ entry (SOCE): a fundamental biological process that regulates gene expression, the onset of inflammation, secretion, and the contraction of airway smooth muscle (ASM). During SOCE, Ca2+ leaves the endoplasmic reticulum, which then stimulates a second, amplifying wave of Ca2+ influx through Orai1 into the cytoplasm. Short Palate LUng and Nasal epithelial Clone 1 (SPLUNC1; gene name BPIFA1) is a multi-functional, innate defense protein that is highly abundant in the lung. We have previously reported that SPLUNC1 was secreted from epithelia, where it bound to and inhibited Orai1, leading to reduced SOCE and ASM relaxation. However, the underlying mechanism of action is unknown. Here, we probed the SPLUNC1-Orai1 interactions in ASM and HEK293T cells using biochemical and imaging techniques. We observed that SPLUNC1 caused a conformational change in Orai1, as measured using Forster resonance energy transfer (FRET). SPLUNC1 binding also led to Nedd4-2 dependent ubiquitination of Orai1. Moreover, SPLUNC1 internalized Orai1 to lysosomes, leading to Orai1 degradation. Thus, we conclude that SPLUNC1 is an allosteric regulator of Orai1. Our data indicate that SPLUNC1-mediated Orai1 inhibition could be utilized as a therapeutic strategy to reduce SOCE.


Subject(s)
Glycoproteins/metabolism , Lung , Muscle, Smooth , Phosphoproteins/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Cell Membrane/metabolism , HEK293 Cells , Humans , Lung/metabolism , Muscle, Smooth/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism
14.
J Cell Sci ; 135(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35178554

ABSTRACT

Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.


Subject(s)
Axonemal Dyneins , Axoneme , Antigens, Surface/metabolism , Axonemal Dyneins/genetics , Axonemal Dyneins/metabolism , Axoneme/metabolism , Cilia/metabolism , Dyneins/genetics , Dyneins/metabolism , GTP-Binding Proteins/metabolism , Humans , Mutation/genetics , Respiratory System/metabolism
15.
Circulation ; 145(3): 219-232, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35041473

ABSTRACT

Electronic cigarettes (e-cigarettes) are battery powered electronic nicotine delivery systems that use a propylene glycol/vegetable glycerin base to deliver vaporized nicotine and flavorings to the body. E-cigarettes became commercially available without evidence regarding their risks, long-term safety, or utility in smoking cessation. Recent clinical trials suggest that e-cigarette use with counseling may be effective in reducing cigarette use but not nicotine dependence. However, meta-analyses of observational studies demonstrate that e-cigarette use is not associated with smoking cessation. Cardiovascular studies reported sympathetic activation, vascular stiffening, and endothelial dysfunction, which are associated with adverse cardiovascular events. The majority of pulmonary clinical trials in e-cigarette users included standard spirometry as the primary outcome measure, reporting no change in lung function. However, studies reported increased biomarkers of pulmonary disease in e-cigarette users. These studies were conducted in adults, but >30% of high school-age adolescents reported e-cigarette use. The effects of e-cigarette use on cardiopulmonary endpoints in adolescents and young adults remain unstudied. Because of adverse clinical findings and associations between e-cigarette use and increased incidence of respiratory diseases in people who have never smoked, large longitudinal studies are needed to understand the risk profile of e-cigarettes. Consistent with the Centers for Disease Control and Prevention recommendations, clinicians should monitor the health risks of e-cigarette use, discourage nonsmokers and adolescents from using e-cigarettes, and discourage smokers from engaging in dual use without cigarette reduction or cessation.


Subject(s)
Cigarette Smoking/adverse effects , Electronic Nicotine Delivery Systems , Physician's Role , Vaping/adverse effects , Humans , Smoking/epidemiology , Tobacco Use Disorder/prevention & control
16.
Nicotine Tob Res ; 24(3): 395-399, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34519792

ABSTRACT

INTRODUCTION: Alveolar macrophages (AMs) are lung-resident immune cells that phagocytose inhaled particles and pathogens, and help coordinate the lung's immune response to infection. Little is known about the impact of chronic e-cigarette use (ie, vaping) on this important pulmonary cell type. Thus, we determined the effect of vaping on AM phenotype and gene expression. AIMS AND METHODS: We recruited never-smokers, smokers, and e-cigarette users (vapers) and performed research bronchoscopies to isolate AMs from bronchoalveolar lavage fluid samples and epithelial cells from bronchial brushings. We then performed morphological analyses and used the Nanostring platform to look for changes in gene expression. RESULTS: AMs obtained from smokers and vapers were phenotypically distinct from those obtained from nonsmokers, and from each other. Immunocytochemistry revealed that vapers AMs had significantly elevated inducible nitric oxide synthase (M1) expression and significantly reduced CD301a (M2) expression compared with nonsmokers or smokers. Vapers' AMs and bronchial epithelia exhibited unique changes in gene expression compared with nonsmokers or smokers. Moreover, vapers' AMs were the most affected of all groups and had 124 genes uniquely downregulated. Gene ontology analysis revealed that vapers and smokers had opposing changes in biological processes. CONCLUSIONS: These data indicate that vaping causes unique changes to AMs and bronchial epithelia compared with nonsmokers and smokers which may impact pulmonary host defense. IMPLICATIONS: These data indicate that normal "healthy" vapers have altered AMs and may be at risk of developing abnormal immune responses to inflammatory stimuli.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Vaping , Gene Expression , Humans , Macrophages, Alveolar , Vaping/adverse effects
17.
Am J Respir Cell Mol Biol ; 66(3): 271-282, 2022 03.
Article in English | MEDLINE | ID: mdl-34807800

ABSTRACT

Orai1 is a plasma membrane Ca2+ channel that mediates store-operated Ca2+ entry (SOCE) and regulates inflammation. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is an asthma gene modifier that inhibits Orai1 and SOCE via its C-terminal α6 region. SPLUNC1 levels are diminished in asthma patient airways. Thus, we hypothesized that inhaled α6 peptidomimetics could inhibit Orai1 and reduce airway inflammation in a murine asthma model. To evaluate α6-Orai1 interactions, we used fluorescent assays to measure Ca2+ signaling, Förster resonance energy transfer, fluorescent recovery after photobleaching, immunostaining, total internal reflection microscopy, and Western blotting. To test whether α6 peptidomimetics inhibited SOCE and decreased inflammation in vivo, wild-type and SPLUNC1-/- mice were exposed to house dust mite (HDM) extract with or without α6 peptide. We also performed nebulization, jet milling, and scanning electron microscopy to evaluate α6 for inhalation. SPLUNC1-/- mice had an exaggerated response to HDM. In BAL-derived immune cells, Orai1 levels increased after HDM exposure in SPLUNC1-/- but not wild-type mice. Inhaled α6 reduced Orai1 levels in mice regardless of genotype. In HDM-exposed mice, α6 dose-dependently reduced eosinophilia and neutrophilia. In vitro, α6 inhibited SOCE in multiple immune cell types, and α6 could be nebulized or jet milled without loss of function. These data suggest that α6 peptidomimetics may be a novel, effective antiinflammatory therapy for patients with asthma.


Subject(s)
Asthma , Peptidomimetics , Animals , Asthma/drug therapy , Calcium/metabolism , Glycoproteins , Humans , Inflammation , Lung/metabolism , Mice , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Phosphoproteins
19.
Am J Physiol Cell Physiol ; 321(6): C954-C963, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34613844

ABSTRACT

Airway secretions contain many signaling molecules and peptides/proteins that are not found in airway surface liquid (ASL) generated by normal human bronchial epithelial cells (NHBEs) in vitro. These play a key role in innate defense and mediate communication between the epithelium, the immune cells, and the external environment. We investigated how culture of NHBE with apically applied secretions from healthy or diseased (cystic fibrosis, CF) lungs affected epithelial function with a view to providing better in vitro models of the in vivo environment. NHBEs from 6 to 8 different donors were cultured at air-liquid interface (ALI), with apically applied sputum from normal healthy donors (normal lung sputum; NLS) or CF donors (CFS) for 2-4 h, 48 h, or with sputum reapplied over 48 h. Proteomics analysis was carried out on the sputa and on the NHBE ASL before and after culture with sputa. Transepithelial electrical resistance (TEER), short circuit current (Isc), and changes to ASL height were measured. There were 71 proteins common to both sputa but not ASL. The protease:protease inhibitor balance was increased in CFS compared with NLS and ASL. Culture of NHBE with sputa for 48 h identified additional factors not present in NLS, CFS, or ASL alone. Culture with either NLS or CFS for 48 h increased cystic fibrosis transmembrane regulator (CFTR) activity, calcium-activated chloride channel (CaCC) activity, and changed ASL height. These data indicate that culture with healthy or disease sputum changes the proteomic profile of ASL and ion transport properties of NHBE and this may increase physiological relevance when using in vitro airway models.


Subject(s)
Bronchi/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Membrane Transport Proteins/metabolism , Proteome , Proteomics , Sputum/metabolism , Case-Control Studies , Cells, Cultured , Cystic Fibrosis/diagnosis , Electric Impedance , Humans , Ion Transport , Time Factors
20.
PLoS One ; 16(7): e0254248, 2021.
Article in English | MEDLINE | ID: mdl-34242292

ABSTRACT

We have modified the periplasmic Escherichia coli glucose/galactose binding protein (GBP) and labelled with environmentally sensitive fluorophores to further explore its potential as a sensor for the evaluation of glucose concentration in airway surface liquid (ASL). We identified E149C/A213R GBP labelled with N,N'-Dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, emission wavelength maximum 536nm) with a Kd for D-glucose of 1.02mM and a fluorescence dynamic range of 5.8. This sensor was specific for D-glucose and exhibited fluorescence stability in experiments for several hours. The use of E149C/A213R GBP-IANBD in the ASL of airway cells grown at air-liquid-interface (ALI) detected an increase in glucose concentration 10 minutes after raising basolateral glucose from 5 to 15mM. This sensor also reported a greater change in ASL glucose concentration in response to increased basolateral glucose in H441 airway cells compared to human bronchial epithelial cells (HBEC) and there was less variability with HBEC data than that of H441 indicating that HBEC more effectively regulate glucose movement into the ASL. The sensor detected glucose in bronchoalveolar lavage fluid (BALf) from diabetic db/db mice but not normoglycaemic wildtype mice, indicating limited sensitivity of the sensor at glucose concentrations <50µM. Using nasal inhalation of the sensor and spectral unmixing to generate images, E149C/A213R GBP-IANBD fluorescence was detected in luminal regions of cryosections of the murine distal lung that was greater in db/db than wildtype mice. In conclusion, this sensor provides a useful tool for further development to measure luminal glucose concentration in models of lung/airway to explore how this may change in disease.


Subject(s)
Biosensing Techniques , Glucose , Animals , Calcium-Binding Proteins , Epithelial Cells , Mice , Monosaccharide Transport Proteins , Periplasmic Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...